// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

gcd.prime_to_gcd_1

Statement

∀ n m, prime n ⇒ ¬(n | m) ⇒ (gcd n m) = 1

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem prime_to_gcd_1 : forall (n:nat.nat), forall (m:nat.nat), (primes.prime n) -> (connectives.Not (primes.divides n m)) -> logic.eq (nat.nat) (gcd n m) (nat.S nat.O).



Matita-Jumb
Statement

theorem prime_to_gcd_1 : \forall (n:nat). \forall (m:nat). ((prime) n) -> ((Not) ((divides) n m)) -> (eq) (nat) ((gcd) n m) ((S) (O) ).



Lean-jumb
Statement

theorem prime_to_gcd_1 : forall (n:nat.nat) , forall (m:nat.nat) , (((primes.prime) ) (n)) -> (((connectives.Not) ) ((((primes.divides) ) (n)) (m))) -> (((logic.eq_) (nat.nat)) ((((gcd.gcd) ) (n)) (m))) (((nat.S) ) ((nat.O) )).



PVS-jumb

Statement

prime_to_gcd_1 : LEMMA (FORALL(n:nat_sttfa_th.sttfa_nat):(FORALL(m:nat_sttfa_th.sttfa_nat):(primes_sttfa_th.prime(n) => (connectives_sttfa_th.sttfa_Not(primes_sttfa_th.sttfa_divides(n)(m)) => logic_sttfa_th.eq[nat_sttfa_th.sttfa_nat](gcd_sttfa.gcd(n)(m))(nat_sttfa_th.sttfa_S(nat_sttfa_th.sttfa_O))))))



OpenTheory

Printing for OpenTheory is not working at the moment.