// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Axiom

primes.match_divides_prop

Statement

∀ n m return_type, ∀ q, m = (n × q) ⇒ return_type ⇒ n | m ⇒ return_type

Main Dependencies
Theory

Coq-Jumb
Statement

Axiom match_divides_prop : forall (n:nat.nat), forall (m:nat.nat), forall (return_type:Prop), (forall (q:nat.nat), (logic.eq (nat.nat) m (nat.times n q)) -> return_type) -> (divides n m) -> return_type



Matita-Jumb
Statement

axiom match_divides_prop : \forall (n:nat). \forall (m:nat). \forall (return_type:Prop). (\forall (q:nat). ((eq) (nat) m ((times) n q)) -> return_type) -> ((divides) n m) -> return_type



Lean-jumb
Statement

axiom match_divides_prop : forall (n:nat.nat) , forall (m:nat.nat) , forall (return_type:Prop) , (forall (q:nat.nat) , ((((logic.eq_) (nat.nat)) (m)) ((((nat.times) ) (n)) (q))) -> return_type) -> ((((primes.divides) ) (n)) (m)) -> return_type



PVS-jumb

Statement

match_divides_prop : AXIOM (FORALL(n:nat_sttfa_th.sttfa_nat):(FORALL(m:nat_sttfa_th.sttfa_nat):(FORALL(return_type:bool):((FORALL(q:nat_sttfa_th.sttfa_nat):(logic_sttfa_th.eq[nat_sttfa_th.sttfa_nat](m)(nat_sttfa_th.times(n)(q)) => return_type)) => (primes_sttfa.sttfa_divides(n)(m) => return_type)))))



OpenTheory

Printing for OpenTheory is not working at the moment.