// This prints the left floatting menu

Theoremprimes.let_clause_1531

Statement

∀ n m, O < m ⇒ n | m ⇒ ∀ d, m = (n × O) ⇒ m = O

Main Dependencies
definition
theorem
Theory

Statement

Theorem let_clause_1531 : forall (n:nat.nat), forall (m:nat.nat), (nat.lt nat.O m) -> (divides n m) -> forall (d:nat.nat), (logic.eq (nat.nat) m (nat.times n nat.O)) -> logic.eq (nat.nat) m nat.O.

Statement

theorem let_clause_1531 : \forall (n:nat). \forall (m:nat). ((lt) (O) m) -> ((divides) n m) -> \forall (d:nat). ((eq) (nat) m ((times) n (O) )) -> (eq) (nat) m (O) .

Statement

theorem let_clause_1531 : forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.lt_) ) ((nat.O) )) (m)) -> ((((primes.divides) ) (n)) (m)) -> forall (d:nat.nat) , ((((logic.eq_) (nat.nat)) (m)) ((((nat.times) ) (n)) ((nat.O) ))) -> (((logic.eq_) (nat.nat)) (m)) ((nat.O) ).

Statement

let_clause_1531 : LEMMA (FORALL(n:nat_sttfa_th.sttfa_nat):(FORALL(m:nat_sttfa_th.sttfa_nat):(nat_sttfa_th.lt(nat_sttfa_th.sttfa_O)(m) => (primes_sttfa.sttfa_divides(n)(m) => (FORALL(d:nat_sttfa_th.sttfa_nat):(logic_sttfa_th.eq[nat_sttfa_th.sttfa_nat](m)(nat_sttfa_th.times(n)(nat_sttfa_th.sttfa_O)) => logic_sttfa_th.eq[nat_sttfa_th.sttfa_nat](m)(nat_sttfa_th.sttfa_O)))))))

Printing for OpenTheory is not working at the moment.