nat.not_le_to_not_le_S_S
∀ n m, ¬(n ≤ m) ⇒ ¬((n+1) ≤ (m+1))
Theorem not_le_to_not_le_S_S : forall (n:nat), forall (m:nat), (connectives.Not (le n m)) -> connectives.Not (le (S n) (S m)).
theorem not_le_to_not_le_S_S : \forall (n:nat). \forall (m:nat). ((Not) ((le) n m)) -> (Not) ((le) ((S) n) ((S) m)).
theorem not_le_to_not_le_S_S : forall (n:nat.nat) , forall (m:nat.nat) , (((connectives.Not) ) ((((nat.le_) ) (n)) (m))) -> ((connectives.Not) ) ((((nat.le_) ) (((nat.S) ) (n))) (((nat.S) ) (m))).
not_le_to_not_le_S_S : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(connectives_sttfa_th.sttfa_Not(nat_sttfa.le(n)(m)) => connectives_sttfa_th.sttfa_Not(nat_sttfa.le(nat_sttfa.sttfa_S(n))(nat_sttfa.sttfa_S(m))))))
Printing for OpenTheory is not working at the moment.