nat.not_le_to_leb_false
∀ n m, ¬(n ≤ m) ⇒ (leb n m) = false
Theorem not_le_to_leb_false : forall (n:nat), forall (m:nat), (connectives.Not (le n m)) -> logic.eq (bool.bool) (leb n m) bool.false.
theorem not_le_to_leb_false : \forall (n:nat). \forall (m:nat). ((Not) ((le) n m)) -> (eq) (bool) ((leb) n m) (false) .
theorem not_le_to_leb_false : forall (n:nat.nat) , forall (m:nat.nat) , (((connectives.Not) ) ((((nat.le_) ) (n)) (m))) -> (((logic.eq_) (bool.bool)) ((((nat.leb) ) (n)) (m))) ((bool.false) ).
not_le_to_leb_false : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(connectives_sttfa_th.sttfa_Not(nat_sttfa.le(n)(m)) => logic_sttfa_th.eq[bool_sttfa_th.sttfa_bool](nat_sttfa.leb(n)(m))(bool_sttfa_th.sttfa_false))))
Printing for OpenTheory is not working at the moment.