// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

nat.le_to_or_lt_eq

Statement

∀ n m, n ≤ m ⇒ (n < m) ∨ (n = m)

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem le_to_or_lt_eq : forall (n:nat), forall (m:nat), (le n m) -> connectives.Or (lt n m) (logic.eq (nat) n m).



Matita-Jumb
Statement

theorem le_to_or_lt_eq : \forall (n:nat). \forall (m:nat). ((le) n m) -> (Or) ((lt) n m) ((eq) (nat) n m).



Lean-jumb
Statement

theorem le_to_or_lt_eq : forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.le_) ) (n)) (m)) -> (((connectives.Or) ) ((((nat.lt_) ) (n)) (m))) ((((logic.eq_) (nat.nat)) (n)) (m)).



PVS-jumb

Statement

le_to_or_lt_eq : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(nat_sttfa.le(n)(m) => connectives_sttfa_th.sttfa_Or(nat_sttfa.lt(n)(m))(logic_sttfa_th.eq[nat_sttfa.sttfa_nat](n)(m)))))



OpenTheory

Printing for OpenTheory is not working at the moment.