// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

nat.le_to_leb_true

Statement

∀ n m, n ≤ m ⇒ (leb n m) = true

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem le_to_leb_true : forall (n:nat), forall (m:nat), (le n m) -> logic.eq (bool.bool) (leb n m) bool.true.



Matita-Jumb
Statement

theorem le_to_leb_true : \forall (n:nat). \forall (m:nat). ((le) n m) -> (eq) (bool) ((leb) n m) (true) .



Lean-jumb
Statement

theorem le_to_leb_true : forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.le_) ) (n)) (m)) -> (((logic.eq_) (bool.bool)) ((((nat.leb) ) (n)) (m))) ((bool.true) ).



PVS-jumb

Statement

le_to_leb_true : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(nat_sttfa.le(n)(m) => logic_sttfa_th.eq[bool_sttfa_th.sttfa_bool](nat_sttfa.leb(n)(m))(bool_sttfa_th.sttfa_true))))



OpenTheory

Printing for OpenTheory is not working at the moment.