nat.le_to_leb_true
∀ n m, n ≤ m ⇒ (leb n m) = true
Theorem le_to_leb_true : forall (n:nat), forall (m:nat), (le n m) -> logic.eq (bool.bool) (leb n m) bool.true.
theorem le_to_leb_true : \forall (n:nat). \forall (m:nat). ((le) n m) -> (eq) (bool) ((leb) n m) (true) .
theorem le_to_leb_true : forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.le_) ) (n)) (m)) -> (((logic.eq_) (bool.bool)) ((((nat.leb) ) (n)) (m))) ((bool.true) ).
le_to_leb_true : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(nat_sttfa.le(n)(m) => logic_sttfa_th.eq[bool_sttfa_th.sttfa_bool](nat_sttfa.leb(n)(m))(bool_sttfa_th.sttfa_true))))
Printing for OpenTheory is not working at the moment.