// This prints the left floatting menu

Theoremnat.eq_minus_body_S

Statement

∀ n, leibniz (minus_body (n+1)) (λm. match_nat_type (n+1) (λq. n - q) m)

Main Dependencies
Theory

Statement

Theorem eq_minus_body_S : forall (n:nat), leibniz.leibniz (nat -> nat) (minus_body (S n)) (fun (m:nat) => match_nat_type (nat) (S n) (fun (q:nat) => minus n q) m).

Statement

theorem eq_minus_body_S : \forall (n:nat). (leibniz) (nat -> nat) ((minus_body) ((S) n)) (\lambda m : nat. (match_nat_type) (nat) ((S) n) (\lambda q : nat. (minus) n q) m).

Statement

theorem eq_minus_body_S : forall (n:nat.nat) , (((leibniz.leibniz) ((nat.nat) -> nat.nat)) (((nat.minus_body) ) (((nat.S) ) (n)))) (fun (m : nat.nat) , ((((nat.match_nat_type) (nat.nat)) (((nat.S) ) (n))) (fun (q : nat.nat) , (((nat.minus) ) (n)) (q))) (m)).

Statement

eq_minus_body_S : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):leibniz_sttfa_th.leibniz[[nat_sttfa.sttfa_nat -> nat_sttfa.sttfa_nat]](nat_sttfa.minus_body(nat_sttfa.sttfa_S(n)))((LAMBDA(m:nat_sttfa.sttfa_nat):nat_sttfa.match_nat_type[nat_sttfa.sttfa_nat](nat_sttfa.sttfa_S(n))((LAMBDA(q:nat_sttfa.sttfa_nat):nat_sttfa.minus(n)(q)))(m))))

Printing for OpenTheory is not working at the moment.