nat.eq_minus_S_pred
∀ n m, (n - (m+1)) = ((n - m)-1)
Theorem eq_minus_S_pred : forall (n:nat), forall (m:nat), logic.eq (nat) (minus n (S m)) (pred (minus n m)).
theorem eq_minus_S_pred : \forall (n:nat). \forall (m:nat). (eq) (nat) ((minus) n ((S) m)) ((pred) ((minus) n m)).
theorem eq_minus_S_pred : forall (n:nat.nat) , forall (m:nat.nat) , (((logic.eq_) (nat.nat)) ((((nat.minus) ) (n)) (((nat.S) ) (m)))) (((nat.pred_) ) ((((nat.minus) ) (n)) (m))).
eq_minus_S_pred : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):logic_sttfa_th.eq[nat_sttfa.sttfa_nat](nat_sttfa.minus(n)(nat_sttfa.sttfa_S(m)))(nat_sttfa.pred(nat_sttfa.minus(n)(m)))))
Printing for OpenTheory is not working at the moment.