// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

gcd.sym_eq_gcd_aux

Statement

∀ p, leibniz (filter_nat_type gcd_aux_body p) (gcd_aux p)

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem sym_eq_gcd_aux : forall (p:nat.nat), leibniz.leibniz (nat.nat -> nat.nat -> nat.nat) (nat.filter_nat_type (nat.nat -> nat.nat -> nat.nat) gcd_aux_body p) (gcd_aux p).



Matita-Jumb
Statement

theorem sym_eq_gcd_aux : \forall (p:nat). (leibniz) (nat -> nat -> nat) ((filter_nat_type) (nat -> nat -> nat) (gcd_aux_body) p) ((gcd_aux) p).



Lean-jumb
Statement

theorem sym_eq_gcd_aux : forall (p:nat.nat) , (((leibniz.leibniz) ((nat.nat) -> (nat.nat) -> nat.nat)) ((((nat.filter_nat_type) ((nat.nat) -> (nat.nat) -> nat.nat)) ((gcd.gcd_aux_body) )) (p))) (((gcd.gcd_aux) ) (p)).



PVS-jumb

Statement

sym_eq_gcd_aux : LEMMA (FORALL(p:nat_sttfa_th.sttfa_nat):leibniz_sttfa_th.leibniz[[nat_sttfa_th.sttfa_nat -> [nat_sttfa_th.sttfa_nat -> nat_sttfa_th.sttfa_nat]]](nat_sttfa_th.filter_nat_type[[nat_sttfa_th.sttfa_nat -> [nat_sttfa_th.sttfa_nat -> nat_sttfa_th.sttfa_nat]]](gcd_sttfa.gcd_aux_body)(p))(gcd_sttfa.gcd_aux(p)))



OpenTheory

Printing for OpenTheory is not working at the moment.