// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

nat.sym_eq_plus_body_S

Statement

∀ n, leibniz (λm. (n + m)+1) (plus_body (n+1))

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem sym_eq_plus_body_S : forall (n:nat), leibniz.leibniz (nat -> nat) (fun (m:nat) => S (plus n m)) (plus_body (S n)).



Matita-Jumb
Statement

theorem sym_eq_plus_body_S : \forall (n:nat). (leibniz) (nat -> nat) (\lambda m : nat. (S) ((plus) n m)) ((plus_body) ((S) n)).



Lean-jumb
Statement

theorem sym_eq_plus_body_S : forall (n:nat.nat) , (((leibniz.leibniz) ((nat.nat) -> nat.nat)) (fun (m : nat.nat) , ((nat.S) ) ((((nat.plus) ) (n)) (m)))) (((nat.plus_body) ) (((nat.S) ) (n))).



PVS-jumb

Statement

sym_eq_plus_body_S : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):leibniz_sttfa_th.leibniz[[nat_sttfa.sttfa_nat -> nat_sttfa.sttfa_nat]]((LAMBDA(m:nat_sttfa.sttfa_nat):nat_sttfa.sttfa_S(nat_sttfa.plus(n)(m))))(nat_sttfa.plus_body(nat_sttfa.sttfa_S(n))))



OpenTheory

Printing for OpenTheory is not working at the moment.