// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

bigops.sym_eq_bigop_O

Statement

leibniz (bigop_body O) (bigop O)

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem sym_eq_bigop_O : forall H, leibniz.leibniz ((nat.nat -> bool.bool) -> H -> (H -> H -> H) -> (nat.nat -> H) -> H) (bigop_body (H) nat.O) (bigop (H) nat.O).



Matita-Jumb
Statement

theorem sym_eq_bigop_O : \forall H. (leibniz) ((nat -> bool) -> H -> (H -> H -> H) -> (nat -> H) -> H) ((bigop_body) (H) (O) ) ((bigop) (H) (O) ).



Lean-jumb
Statement

theorem sym_eq_bigop_O : forall (H : Type) , (((leibniz.leibniz) (((nat.nat) -> bool.bool) -> (H) -> ((H) -> (H) -> H) -> ((nat.nat) -> H) -> H)) (((bigops.bigop_body) (H)) ((nat.O) ))) (((bigops.bigop) (H)) ((nat.O) )).



PVS-jumb

Statement

sym_eq_bigop_O [H:TYPE+] : LEMMA leibniz_sttfa_th.leibniz[[[nat_sttfa_th.sttfa_nat -> bool_sttfa_th.sttfa_bool] -> [H -> [[H -> [H -> H]] -> [[nat_sttfa_th.sttfa_nat -> H] -> H]]]]](bigops_sttfa.bigop_body[H](nat_sttfa_th.sttfa_O))(bigops_sttfa.bigop[H](nat_sttfa_th.sttfa_O))



OpenTheory

Printing for OpenTheory is not working at the moment.