nat.plus_to_minus
∀ n m p, n = (m + p) ⇒ (n - m) = p
Theorem plus_to_minus : forall (n:nat), forall (m:nat), forall (p:nat), (logic.eq (nat) n (plus m p)) -> logic.eq (nat) (minus n m) p.
theorem plus_to_minus : \forall (n:nat). \forall (m:nat). \forall (p:nat). ((eq) (nat) n ((plus) m p)) -> (eq) (nat) ((minus) n m) p.
theorem plus_to_minus : forall (n:nat.nat) , forall (m:nat.nat) , forall (p:nat.nat) , ((((logic.eq_) (nat.nat)) (n)) ((((nat.plus) ) (m)) (p))) -> (((logic.eq_) (nat.nat)) ((((nat.minus) ) (n)) (m))) (p).
plus_to_minus : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(FORALL(p:nat_sttfa.sttfa_nat):(logic_sttfa_th.eq[nat_sttfa.sttfa_nat](n)(nat_sttfa.plus(m)(p)) => logic_sttfa_th.eq[nat_sttfa.sttfa_nat](nat_sttfa.minus(n)(m))(p)))))
Printing for OpenTheory is not working at the moment.