// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

nat.minus_plus

Statement

∀ n m p, ((n - m) - p) = (n - (m + p))

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem minus_plus : forall (n:nat), forall (m:nat), forall (p:nat), logic.eq (nat) (minus (minus n m) p) (minus n (plus m p)).



Matita-Jumb
Statement

theorem minus_plus : \forall (n:nat). \forall (m:nat). \forall (p:nat). (eq) (nat) ((minus) ((minus) n m) p) ((minus) n ((plus) m p)).



Lean-jumb
Statement

theorem minus_plus : forall (n:nat.nat) , forall (m:nat.nat) , forall (p:nat.nat) , (((logic.eq_) (nat.nat)) ((((nat.minus) ) ((((nat.minus) ) (n)) (m))) (p))) ((((nat.minus) ) (n)) ((((nat.plus) ) (m)) (p))).



PVS-jumb

Statement

minus_plus : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(FORALL(p:nat_sttfa.sttfa_nat):logic_sttfa_th.eq[nat_sttfa.sttfa_nat](nat_sttfa.minus(nat_sttfa.minus(n)(m))(p))(nat_sttfa.minus(n)(nat_sttfa.plus(m)(p))))))



OpenTheory

Printing for OpenTheory is not working at the moment.