// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Theorem

nat.le_plus_b

Statement

∀ b n m, (n + b) ≤ m ⇒ n ≤ m

Main Dependencies
Theory

Coq-Jumb
Statement

Theorem le_plus_b : forall (b:nat), forall (n:nat), forall (m:nat), (le (plus n b) m) -> le n m.



Matita-Jumb
Statement

theorem le_plus_b : \forall (b:nat). \forall (n:nat). \forall (m:nat). ((le) ((plus) n b) m) -> (le) n m.



Lean-jumb
Statement

theorem le_plus_b : forall (b:nat.nat) , forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.le_) ) ((((nat.plus) ) (n)) (b))) (m)) -> (((nat.le_) ) (n)) (m).



PVS-jumb

Statement

le_plus_b : LEMMA (FORALL(b:nat_sttfa.sttfa_nat):(FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(nat_sttfa.le(nat_sttfa.plus(n)(b))(m) => nat_sttfa.le(n)(m)))))



OpenTheory

Printing for OpenTheory is not working at the moment.