nat.eq_minus_O
∀ n m, n ≤ m ⇒ (n - m) = O
Theorem eq_minus_O : forall (n:nat), forall (m:nat), (le n m) -> logic.eq (nat) (minus n m) O.
theorem eq_minus_O : \forall (n:nat). \forall (m:nat). ((le) n m) -> (eq) (nat) ((minus) n m) (O) .
theorem eq_minus_O : forall (n:nat.nat) , forall (m:nat.nat) , ((((nat.le_) ) (n)) (m)) -> (((logic.eq_) (nat.nat)) ((((nat.minus) ) (n)) (m))) ((nat.O) ).
eq_minus_O : LEMMA (FORALL(n:nat_sttfa.sttfa_nat):(FORALL(m:nat_sttfa.sttfa_nat):(nat_sttfa.le(n)(m) => logic_sttfa_th.eq[nat_sttfa.sttfa_nat](nat_sttfa.minus(n)(m))(nat_sttfa.sttfa_O))))
Printing for OpenTheory is not working at the moment.