connectives.conj
∀ A B, A ⇒ B ⇒ A ∧ B
Axiom conj : forall (A:Prop), forall (B:Prop), A -> B -> And A B
axiom conj : \forall (A:Prop). \forall (B:Prop). (A) -> (B) -> (And) A B
axiom conj : forall (A:Prop) , forall (B:Prop) , (A) -> (B) -> (((connectives.And) ) (A)) (B)
conj : AXIOM (FORALL(A:bool):(FORALL(B:bool):(A => (B => connectives_sttfa.sttfa_And(A)(B)))))
Printing for OpenTheory is not working at the moment.