// This prints the left floatting menu
Dedukti    Load Matita      Load Coq         Load Lean        Load PVS         Load OpenTheory Load
Dedukti-jumb

Axiom

nat.axiom_eqb_body_S

Statement

∀ n, equal (eqb_body (n+1)) (λm. match_nat_type false (λq. n = q) m)

Main Dependencies
Theory

Coq-Jumb
Statement

Axiom axiom_eqb_body_S : forall (n:nat), connectives.equal (nat -> bool.bool) (eqb_body (S n)) (fun (m:nat) => match_nat_type (bool.bool) bool.false (fun (q:nat) => eqb n q) m)



Matita-Jumb
Statement

axiom axiom_eqb_body_S : \forall (n:nat). (equal) (nat -> bool) ((eqb_body) ((S) n)) (\lambda m : nat. (match_nat_type) (bool) (false) (\lambda q : nat. (eqb) n q) m)



Lean-jumb
Statement

axiom axiom_eqb_body_S : forall (n:nat.nat) , (((connectives.equal) ((nat.nat) -> bool.bool)) (((nat.eqb_body) ) (((nat.S) ) (n)))) (fun (m : nat.nat) , ((((nat.match_nat_type) (bool.bool)) ((bool.false) )) (fun (q : nat.nat) , (((nat.eqb) ) (n)) (q))) (m))



PVS-jumb

Statement

axiom_eqb_body_S : AXIOM (FORALL(n:nat_sttfa.sttfa_nat):connectives_sttfa_th.equal[[nat_sttfa.sttfa_nat -> bool_sttfa_th.sttfa_bool]](nat_sttfa.eqb_body(nat_sttfa.sttfa_S(n)))((LAMBDA(m:nat_sttfa.sttfa_nat):nat_sttfa.match_nat_type[bool_sttfa_th.sttfa_bool](bool_sttfa_th.sttfa_false)((LAMBDA(q:nat_sttfa.sttfa_nat):nat_sttfa.eqb(n)(q)))(m))))



OpenTheory

Printing for OpenTheory is not working at the moment.